§ 18.69

direct current circuits with consideration given to reversed polarity.

- (5) Tests on batteries shall include series and/or parallel combinations of twice the normal battery complement, and the effect of capacitance and inductance, added to that normally present in the circuit.
- (6) No ignition shall occur when approximately ½-inch of a single wire strand representative of the wire used in the equipment or device is shorted across the intrinsically safe circuit.
- (7) Consideration shall be given to insure against accidental reversal of polarity.
- (c) Line-powered equipment and devices:
- (1) Line-powered equipment shall meet all applicable provisions specified for battery-powered equipment.
- (2) Nonintrinsically safe components supplying power for intrinsically safe circuits shall be housed in explosion-proof enclosures and be provided with energy limiting components in the enclosure.
- (3) Wiring for nonintrinsically safe circuits shall not be intermingled with wiring for intrinsically safe circuits.
- (4) Transformers that supply power for intrinsically safe circuits shall have the primary and secondary windings physically separated. They shall be designed to withstand a test voltage of 1,500 volts when rated 125 volts or less and 2,500 volts when rated more than 125 volts.
- (5) The line voltage shall be increased to 120 percent of nominal rated voltage to cover power line voltage variations.
- (6) In investigations of alternating current circuits a minimum of 5,000 make-break sparks will be produced in each test.
- (d) The design of intrinsically safe circuits shall preclude extraneous voltages caused by insufficient isolation or inductive coupling. The investigation shall determine the effect of ground faults where applicable.
- (e) Identification markings: Circuits and components of intrinsically safe equipment and devices shall be adequately identified by marking or labeling. Battery-powered equipment shall be marked to indicate the manufacturer, type designation, ratings, and size of batteries used.

§ 18.69 Adequacy tests.

MSHA reserves the right to conduct appropriate test(s) to verify the adequacy of equipment for its intended service.

Subpart D—Machines Assembled With Certified or ExplosionProof Components, Field Modifications of Approved Machines, and Permits To Use Experimental Equipment

§18.80 Approval of machines assembled with certified or explosion-proof components.

- (a) A machine may be a new assembly, or a machine rebuilt to perform a service that is different from the original function, or a machine converted from nonpermissible to permissible status, or a machine converted from direct- to alternating-current power or vice versa. Properly identified components that have been investigated and accepted for application on approved machines will be accepted in lieu of certified components.
- (b) A single layout drawing (see Figure 1 in Appendix II) or photographs will be acceptable to identify a machine that was assembled with certified or explosion-proof components. The following information shall be furnished:
 - (1) Overall dimensions.
 - (2) Wiring diagram.
- (3) List of all components (see Figure 2 in Appendix II) identifying each according to its certification number or the approval number of the machine of which the component was a part.
 - (4) Specifications for:
 - (i) Overcurrent protection of motors.
- (ii) All wiring between components, including mechanical protection such as hose conduits and clamps.
- (iii) Portable cable, including the type, length, outside diameter, and number and size of conductors.
- (iv) Insulated strain clamp for machine end of portable cable.
- (v) Short-circuit protection to be provided at outby end of portable cable.
- (c) MSHA reserves the right to inspect and to retest any component(s) that had been in previous service, as it deems appropriate.